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1. INTRODUCTION 

     Electrically conducting fluid flow in presence of 

magnetic field, the effect of temperature dependent 

conductivity on MHD flow with heat conduction 

problems are important from the technical point of view 

and such types of problems have received much attention 

by many researchers. 

     Magnetohydrodynamics is that branch of science, 

which deals with the motion of highly conducting 

ionized (electric conductor) fluid in presence of magnetic 

field. The motion of the conducting fluid across the 

magnetic field generates electric currents which change 

the magnetic field and the action of the magnetic field on 

these currents give rise to mechanical forces, which 

modify the fluid. It is possible to attain equilibrium in a 

conducting fluid if the current is parallel to the magnetic 

field. In the case when the conductor is either a liquid or a 

gas, electromagnetic forces will be generated which may 

be of the same order of magnitude as the hydrodynamical 

and inertial forces. Thus the equation of motion as well 

as the other forces will have to take these 

electromagnetic forces into account. 

     Convection is the transfer of heat energy in a gas or 

liquid by movement of currents. Considerable 

convection is responsible for making macaroni rise and 

fall in a pot of heated water. The warmer portions of the 

water are less dense and therefore, they rise and. the 

cooler portions of the water fall because they are denser.  

Model studies of the free convection flows have earned 

reputations because of their applications in geophysical, 

geothermal and nuclear engineering problems. Akther [7] 

published journal articles. 

 

 

The present study is to incorporate the idea of the effects  

of temperature dependent thermal conductivity on MHD 

free convection boundary layer flow along a vertical flat 

plat. The governing boundary layer equations are 

transformed into a non-dimensional form and the 

resulting non-linear system of partial differential 

equations is reduced to local non-similar partial 

differential forms by adopting appropriate 

transformations. The transformed boundary layer 

equations are then solved numerically. Numerical results 

of the velocity, temperature, surface temperature and heat 

transfer for the magnetic, thermal conductivity variation, 

Prandtl number, heat generation and joule heating 

parameters are presented graphically. 

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM 

     We consider a steady two dimensional laminar free 

convection flow of an electrically conducting, viscous, 

incompressible fluid along a vertical flat plate of length l, 

thickness b (Fig.-1). It is assumed that the temperature at 

the outer surface of the plate is maintained at a constant 

temperature Tb, where Tb > T, the ambient temperature 

of fluid. A uniform magnetic field strength H0 is imposed 

along the y -axis i.e. normal direction to the surface and 

x -axis is taken along the plate. The coordinate system 

and the configuration are shown in Fig.-1. 

So the governing equations under Boussinesq 

approximations for this present problem of continuity, 

momentum, energy equations take the form 
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Fig 1. Physical model and coordinate system 

Here.   is coefficient of volume expansion. The 

temperature dependent thermal conductivity, which is 

used by Rahaman [2] as follows 

[1 ( )]f fT T       (4) 

Where   is the thermal conductivity of the ambient 

fluid and  is a constant, defined as 
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The dimensionless governing equations and boundary 

conditions obtained by using these dimensionless 

quantities 
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where Gr is the Grashof number,  is the dimensionless 

temperature. 

From (1)-(3), we get the dimensionless equations 
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heating  parameter and 
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generation parameter. All are dimensionless parameters. 

The corresponding boundary conditions (5) then follows 
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 is the conjugate conduction 

parameter. In the present work, it is considered p = 1. 

To solve the equations (8)-(9) by boundary conditions 

(10) the following transformations are proposed by 

Merkin & Pop [4] 
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here  is the similarity variable and  is the 

non-dimensional stream function which satisfies the 

continuity equation and is related to the velocity 

components in the usual way as 

y
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Here, h(x,) represents the dimensionless temperature. 

The momentum and energy equations are transformed 

for the new coordinate system as 
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where prime denotes partial differentiation with respect 

to . The boundary conditions for (10) then take the form 
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It is important to calculate the values of the surface 

temperature and it is obtained from this relation 
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In practical point of view, it is important to calculate the 

values of the local rate of heat transfer from this 

non-dimensional form as 
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local rate of heat transfer is 
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3. METHOD OF SOLUTION 

     In this paper investigated the effects of the 

temperature dependent thermal conductivity on 

electrically conducting fluid in free convection flow 

along a vertical flat plate with heat generation and joule 

heating for strong magnetic field. Along with the 

boundary conditions (14), the solution of the parabolic 

non-linear ordinary differential equations (12) and (13) 

will be found by using the implicit finite difference 

method together with Keller-box elimination technique 

[5] which is well documented by Cebeci and Bradshaw 

[6]. 

 

4. RESULT AND DISCUTION 

     In this simulation the values of the Prandtl number Pr 

are considered as 0.733, 1.099, 1.63 &2.18 that 

correspond to hydrogen, water, glycerin&sulfur dioxide 

respectively. 

     The velocity and the temperature profiles obtained 

from the solutions of equations (12) and (13) are depicted 

in figures 2 to 6. Also the surface temperature and the 

local rate of heat transfer profiles obtained from the 

solutions of equations (15) and (17) are depicted in 

figures 7 to 11. 

     In Fig. 2(a), it is shown that the magnetic field action 

retards the fluid velocity with   = 0.01, Pr = 0.733, Q = 

0.01 and J = 0.01. Here position of peak velocity moves 

toward the interface with the increasing M. From fig. 

2(b), it can be observed that the temperature within the 

boundary layer increases for increasing values of M. 

The effect of thermal conductivity variation parameter  

on velocity and temperature against η within boundary 

layer with M = 0.01, Pr = 0.733, Q = 0.01 and J = 0.01 

are shown in fig. 3(a), 3(b) respectively. It is seen that the 

velocity and temperature increase within boundary layer 

with increasing . It means that the velocity and thermal 

boundary layer thickness increase for large values of . 
Fig. 4(a) and 4(b) illustrate the velocity and temperature 

against η for different values of Pr with M = 0.01,  = 

0.01, Q = 0.01 and J = 0.01. From fig. 4(a), it can be 

observed that the velocity decreases as well as its 

position moves toward the interface with the increasing 

Pr. From fig. 4(b), it is seen that the temperature profiles 

shift downward with the increasing values of Pr.  

     Figures 5(a)-(b) describe the velocity and temperature 

against η for different values of heat generation 

parameter Q with M = 0.01,  = 0.01, Pr = 0.733 and J = 

0.01. From fig. 5(a), it can be observed that the velocity 

increases as well as its position moves toward the 

interface with the increasing Q. Fig. 5(b), shows the 

temperature also same as increasing within the boundary 

layer. It means that the velocity and thermal boundary 

layer thickness increase for large values of Q. 

    The effect of joule heating parameter J on the velocity 

and temperature against η within the boundary layer with 

M =0.01,  = 0.01, Pr =0.733 and Q =0.01 are shown in 

fig. 6(a), 6(b) respectively. The velocity and temperature 

increase within boundary layer with increasing J. 

     The variation of the surface temperature )0,(x  and 

local rate of heat transfer uxN  against x for different 

values of M with  = 0.01, Pr = 0.733, Q = 0.01 and J = 

0.01 at different positions are illustrated in fig. 7(a), 7(b) 

respectively. The velocity decreases as fig. 2(a) due to 

the increasing M. It is observed from fig. 7(a) that the 

increased value of magnetic parameter M leads to 

increase the surface temperature factor on the plate. But 

the temperature within the boundary layer increases (Fig. 

2(b)) for increasing M. As a result, fig. 7(b) shows that 

the heat transfer rate from the plate to the fluid decreases 

due to the increased value of M. The magnetic field acts 

against the flow and increases the surface temperature 

and reduces the heat transfer at the interface. 

     Fig. 8(a)-8(b) reveal that the effect of thermal 

conductivity variation parameter  on the surface 

temperature and heat transfer against x with M = 0.01, Pr 

= 0.733, Q = 0.01 and J = 0.01. It is seen that the surface 

temperature increases for increasing . The same result is 

found for heat transfer from fig. 8(b). we observe from 

fig. 8(b) that heat transfer increases for the increasing  . 
Fig. 9(a)-9(b) deal with the effect of Pr on surface 

temperature and the rate of heat transfer with the 

increasing of axial distance x for fixed M = 0.01,  = 0.01, 

Q = 0.01 and J = 0.01. The values of Prandtl number are 

proportional to the viscosity of the fluid. So the 

increasing Pr the surface temperature decreases on the 

plate which is shown in fig. 9(a). From fig. 9(b), we see 

that heat transfer increases due to increasing values of Pr. 

Fig. 10(a), 10(b) deal with the effect of heat generation 

parameter Q on the surface temperature and heat transfer 

against x with controlling parameter M = 0.01,  = 0.01, 

Pr = 0.733 and J = 0.01. We see that an increase value of 

Q increase fluid velocity within boundary layer which 
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shown in fig. 5(a). So the corresponding surface 

temperature increase with increasing values of Q. The 

opposite result is seen for heat transfer with increasing of 

Q. Finally it is noted that the surface temperature and 

heat transfer increase and decrease for increasing of Q. 

Fig. 11(a), 11(b) deal with the effect of joule heating 

parameter J on the surface temperature and heat transfer 

against x with M = 0.01,  = 0.01, Pr = 0.733 and Q = 

0.01. It is noted that the surface temperature and heat 

transfer increase and decrease for increasing values of J. 
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Fig  2(a). Velocity & (b) Temperature profiles against η 

for varying of M with γ=0.01,Pr=0.733,Q=0.01,J=0.01. 
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Fig  3(a). Velocity & (b) Temperature for η for varying of 

γ with M = 0.01, Pr = 0.733, Q = 0.01 & J = 0.01. 
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Fig  4(a). Velocity & (b) Temperature profiles against η 

for varying of Pr with M=0.01,γ=0.01,Q=0.01,J=0.01. 
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Fig  5(a). Velocity & (b) Temperature for η for varying of 

Q with M = 0.01, γ = 0.01, Pr = 0.733 & J = 0.01. 
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Fig  6(a). Velocity & (b) Temperature for η for varying of 

J with M = 0.01,  = 0.01, Pr = 0.733 & Q = 0.01. 
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Fig 7(a). Surface temperature & (b) Heat transfer for x 

for varying of M with =0.01,Pr=0.733,Q=0.01,J=0.01. 
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Fig 8(a). Surface temperature & (b) Heat transfer for x 

for varying of  with M=0.01,Pr=0.733,Q = 0.01,J=0.01. 
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Fig 9(a). Surface temperature & (b) Heat transfer for x 

for varying of Pr with M=0.01,=0.01,Q=0.01,J=0.01. 
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Fig 10(a). Surface temperature & (b) Heat transfer for x 

for varying of Q with =0.01,M=0.01,Pr=0.733,J=0.01. 
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Fig 11(a). Surface temperature )0,(x  & (b) Heat 

transfer uxN  for x for varying of J with M = 0.01,  = 

0.01, Pr = 0.733, Q = 0.01. 

 

5. CONCLUSION 

     From this investigation the following conclusions 

may be drawn 
     i) The velocity within the boundary layer increases for 

decreasing values of M, Pr and for increasing values of , 
Q and J. 

     ii) The temperature within the boundary layer 

increases for increasing values of M, , Q and J and for 

decreasing values of Pr. 

    iii) The surface temperature decreases for the 

increasing values of Pr and increases for increasing 

values of M, , Q and J. 

    iv) Increasing values of .and Pr leads to an increase in 

the rate of heat transfer. On the other hand, this decreases 

for increasing values of M, Q and J. 

 

6. REFERENCES 

1. Hossain, M. A. The viscous and Joule heating 

effects on MHD free convection flow with variable 

plate temperature, Int. J. Heat transfer Vol. 35, No. 

12, pp.3485-3487, (1992).  

2. Rahaman, M.M, Mamun A.A, Azim M.A and 

Alim, M. A. Effects of temperature dependent 

thermal conductivity on magnetohydrodynamic 

(MHD) free convection flow along a vertical flat 

plate with heat conduction, Nonlinear Analysis: 

Modeling and Control, Vol.13, No. 4,pp.513-524, 

(2008). 

3. Alim, M. A., Alam, M. and Mamun, A. A., Joule 

heating effect on the coupling of conduction with 

MHD free convection flow from a vertical flat 

plate, Nonlinear Analysis: Modeling and Control, 

Vol.12, No. 3,pp.307-316, (2007). 

4. Merkin J.H and Pop I., Conjugate free convection 

on a vertical surface, Int. J. Heat Mass Transfer, 

Vol. 39, pp.1527- 1534, (1996). 

5. Keller, H. B. Numerical methods in boundary layer 

theory, Annual Rev. Fluid Mech. Vol. 10, pp. 

417-433, (1978). 

6. Cebeci, T and Bradshaw, P. Physical and 

Computational Aspects of Convective Heat 

Transfer, Springer, New York, (1984). 

7. Ali, Mohammad Mokaddes and Akther Rowsanara, 

Combined effects of radiation and heat generation 

on MHD  natural convection flow along a vertical 

flat plate in presence of heat conduction, BRAC 

University Journal, Vol.VI ,No. 2,pp 11-20,(2009). 

 

7. MAILING ADDRESS 
 
A.K.M. Safiqul Islam

 

Department of Mathematics, Gowripur Govt. College,  

Mymensingh. 

E-mail: Safiqis@yahoo.com  

 


